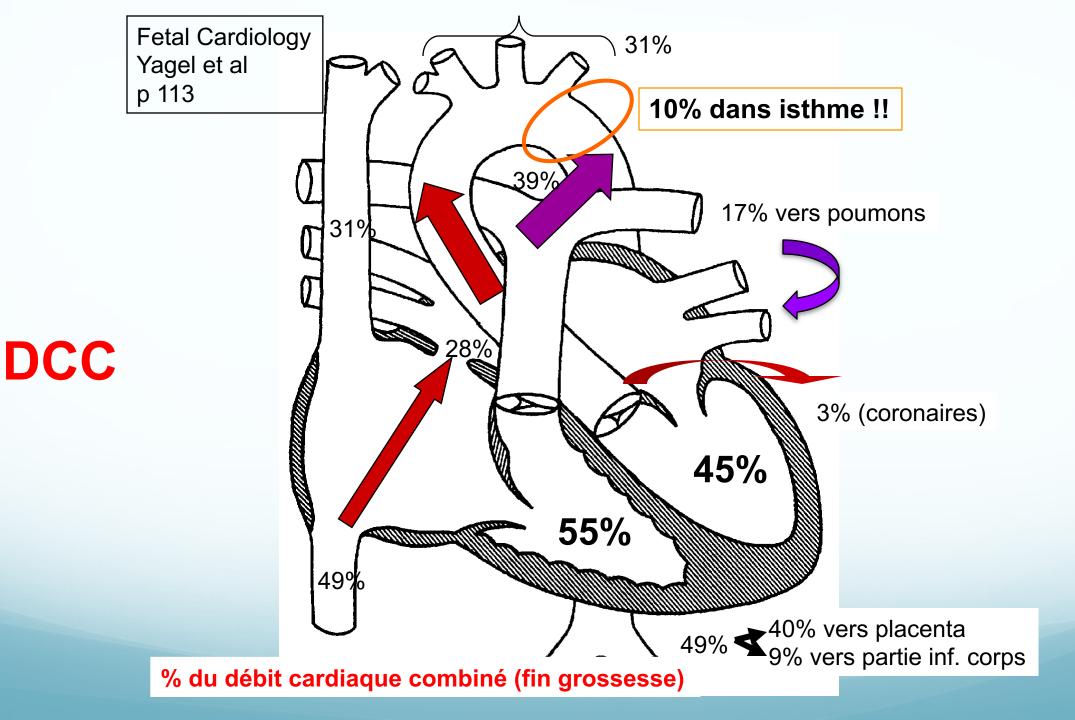
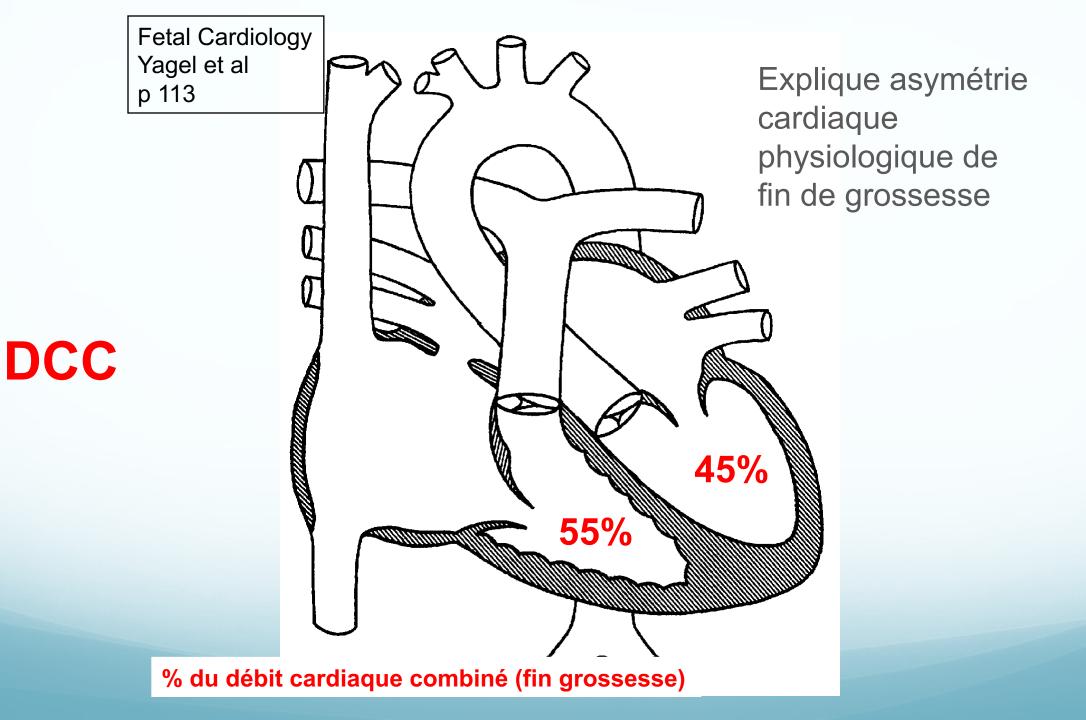
Physiopathologie des grandes détresses cardio-respiratoires

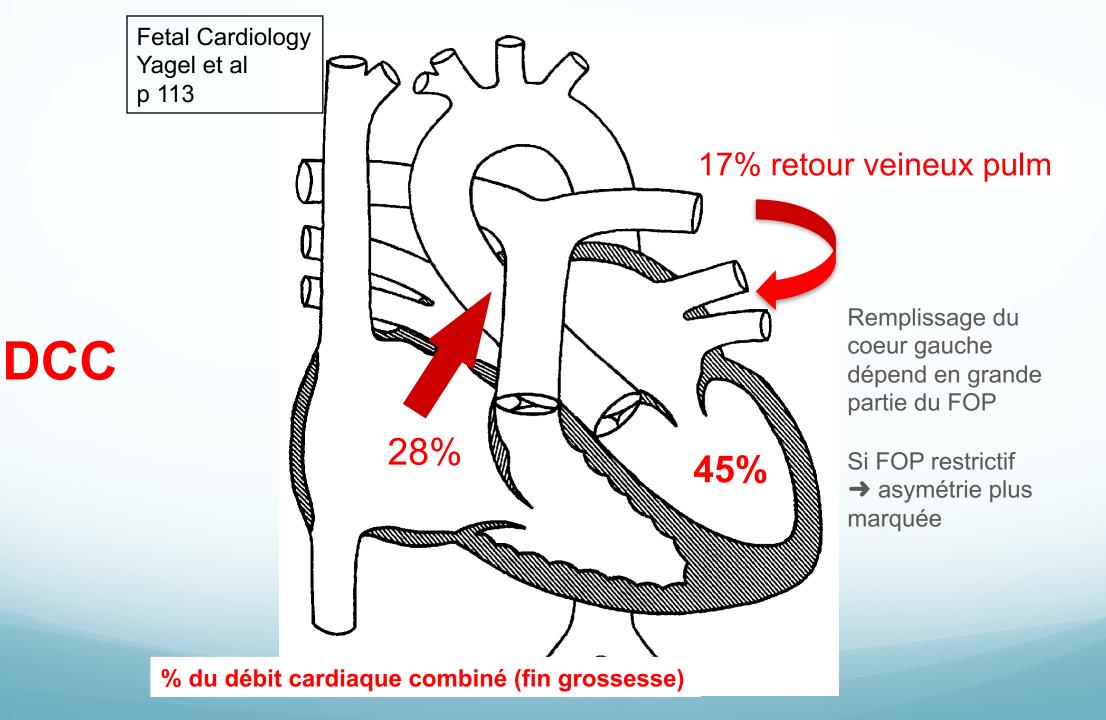
Catherine Barrea Cardiologie pédiatrique, UCL

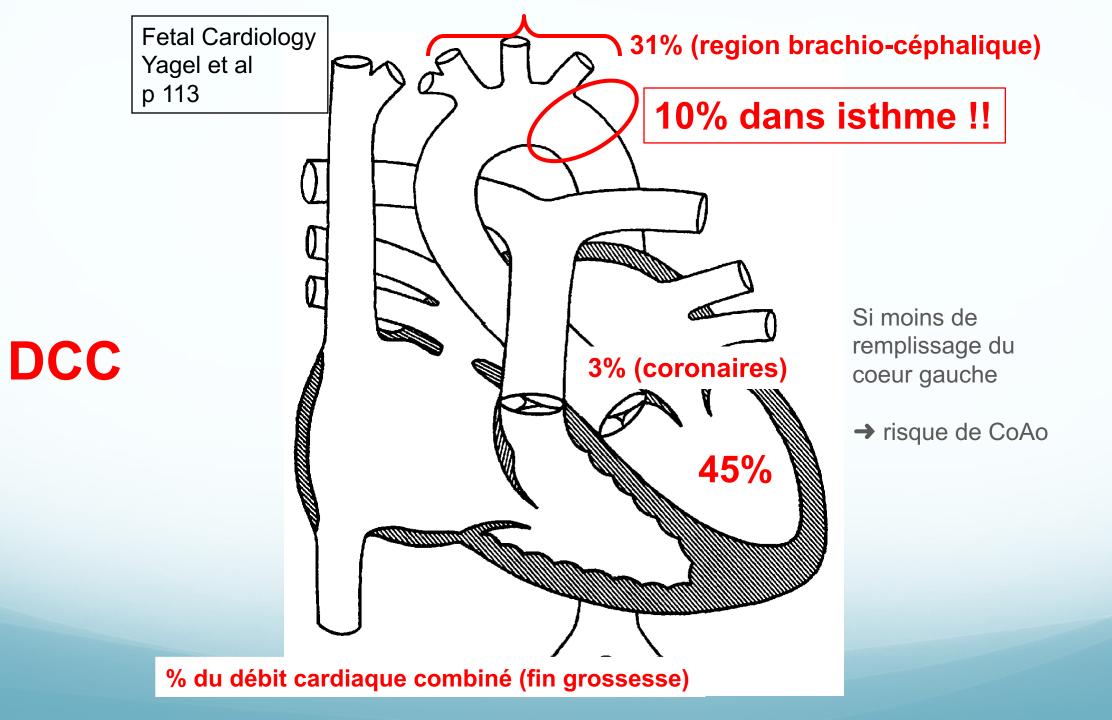
Octobre 2024

Que se passe-t-il à la naissance?

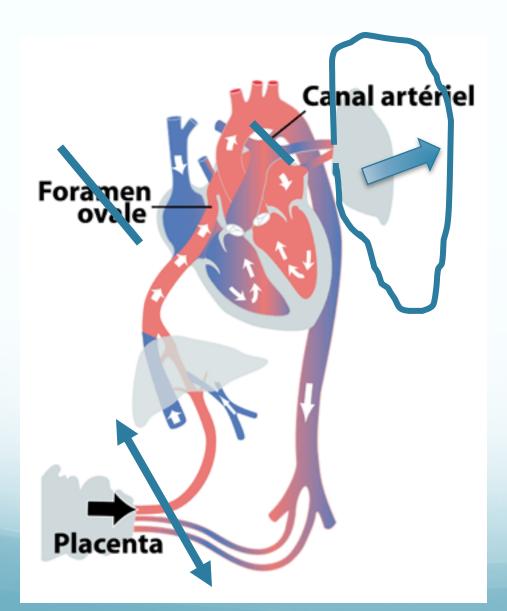

- Passage de la vie aquatique à la vie aérienne ...
- Passage de la circulation fœtale à la circulation postnatale ...

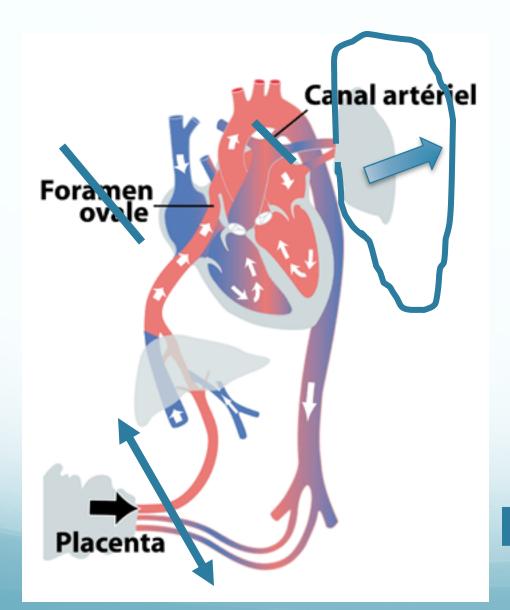



Circulation fœtale



- Placenta = oxygénateur fc à très faible résistance
- Bypass des poumons par CA vu poumons = haute résistance (pas rôle oxygénation)
- Présence de 2 « shunts »
 - FO
 - CA
- 2 ventricules assurent en parallèle le débit cardiaque dans 1 seul circuit
- Débit cardiaque combiné 450 ml/min/Kg



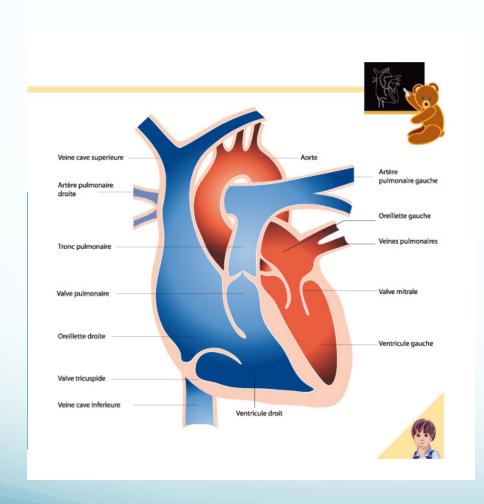

A la naissance : « circulation transitionnelle »

- Disparition du placenta : ↑ ↑ résistances vasculaires systémiques
- Aération et vasodilatation pulmonaire: ↓ résistances vasculaires pulmonaires
- Fermeture FO
- Fermeture CA

dia suivante

A la naissance : « circulation transitionnelle »

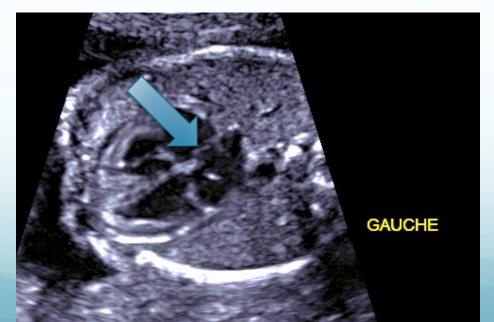
Fermeture FO:


phénomène mécanique par augmentation du retour veineux pulmonaire ds OG et fermeture du flap

Fermeture CA:

suite à **7** p02 et **Y** PG contraction puis fermeture anatomique

Circulation post-natale


- Cœur en série
- Chaque ventricule assume l'entièreté du débit cardiaque dans 2 circuits placés en série

Urgences cardiaques néonatales

- Pathologies FO dépendantes
- Pathologies ducto-dépendantes
 - Pour circulation pulmonaire
 - Pour la circulation systémique
- Retour veineux pulmonaire total bloqué = (quasi) dernière urgence chirugicale néonatale
- (Hypertension artérielle pulmpnaire HTAP) primaire/secondaire
- (Pathologies du myocarde)
- (Arythmies)
- (ALCAPA) NB/ plutôt vers ques semaines-mois de vie quand résistances pulmonaires baissent

Pathologies FO dépendantes

- MANIFESTATION IMMEDIATE en général
 - Augmentation du retour veineux pulm dès naissance avec augmentation des pressions OG et fermeture du flap/valve de Vieussens du FO
 - Parfois, SIA intact dès anténatal

Pathologies FO dépendantes

- Pathologies?
 - TGV
 - Obstructions sévères coeur gauche dont hypoplasie coeur gauche mais aussi parfois sténose Ao critique, etc
 - Obstacles droits sévères dont atrésie tricuspide, sténose pulm critique et atrésie pulmonaire à SIV intact, etc
 - → plus rare car gros débit D-G par FO en anténatal

TGV

- Mixing se fait surtout au niveau des oreillettes (cavités à basse pression)
- Souvent CIA légt restrictive
- ~1-3% SIA intact : vie extra-ut impossible
- Importance du diagnostic anténatal

Vaisseaux //

OD

Detection of Transposition of the Great Arteries in Fetuses Reduces Neonatal Morbidity and Mortality

Damien Bonnet, MD; Anna Coltri, MD; Gianfranco Butera, MD; Laurent Fermont, MD; Jérôme Le Bidois, MD; Jean Kachaner, MD; Daniel Sidi, MD

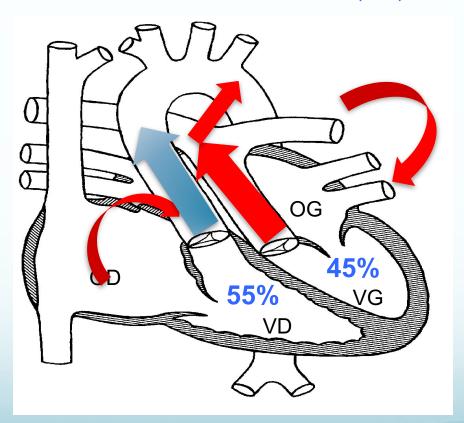
Circulation 1999 Feb 23; 99 (7): 916 -8

 Faible sensibilité pour détection prénatale de FO restrictif (~50%)

Toujours être prêt pour Rashkind Accouchement dans centre avec cardio-pédiatre

Pourquoi petit FOP et petit CA ds TGV?

35% vers tête + 10% vers coronaires plus que ds coeur 'normal' car sang moins oxygéné


45% debit du VG

25% retour veineux pulm + 20% par FOP

alors que débit par FOP ds coeur 'normal' = 28%

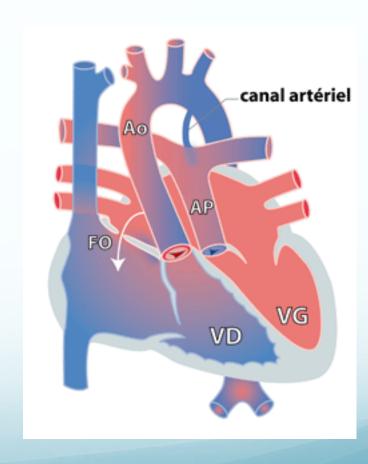
= FOP plus petit

10% ds isthme (OK)

20% (45-25%) par CA donc moins que ds coeur 'normal' (39%)

= CA plus petit

25% vers poumons car reçoivent sg plus oxygéné et donc vasodilatation (vs 17% ds coeur normal)


% du débit cardiaque combiné (DCC)

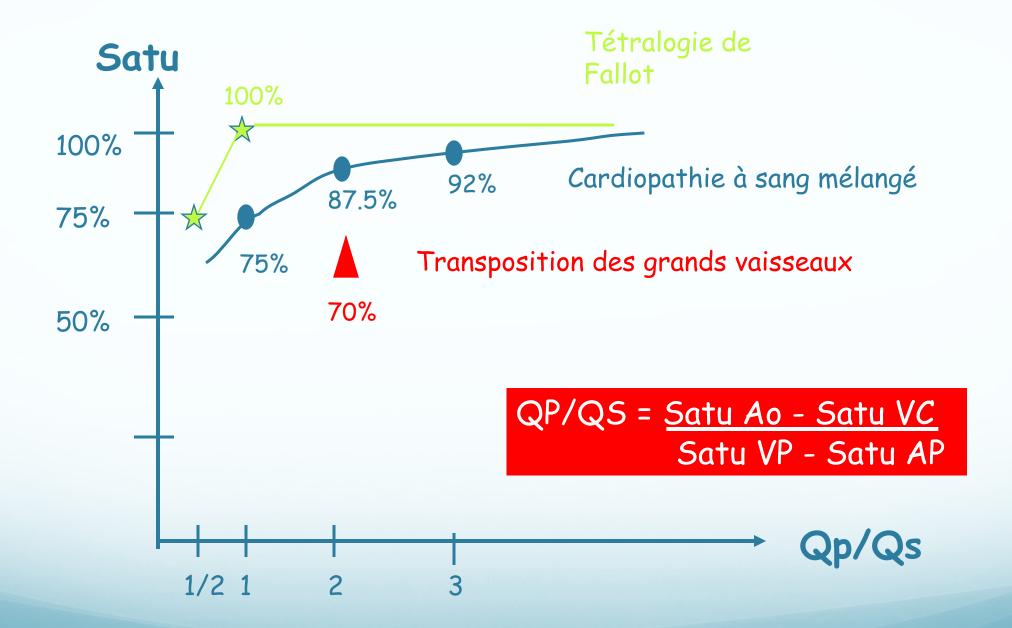
TGV

- **FO ouvert** est indispensable au mixing (mélange de sang oxygéné et non-oxygéné) cavités à basse pression
- CA perméable aide également à maintenir bonne saturation par ↑ débit pulm mais non suffisant

NB/ Si SIA intact, peut être délétère de mettre du Prostin et ouvrir largement le CA (car circulation systémique se vide ds circulation pulm et pas assez débit systémique)

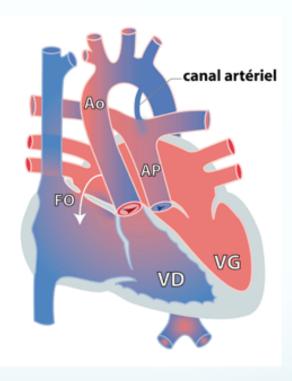
 Pas bon mélange/mixing au niveau de CIV (haute pression) donc même si CIV: importance FO ouvert

Principe de Fick

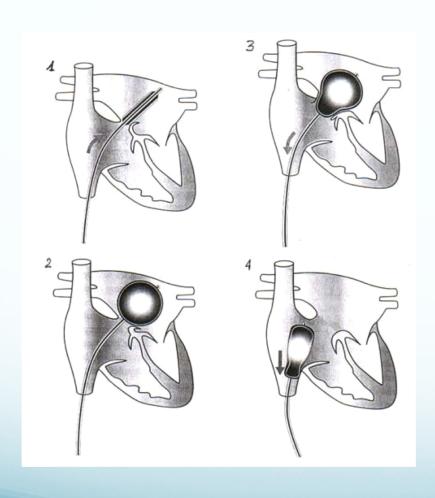

- Quantité d'une substance captée ou relâchée par un organe dépend du débit et de concentration de cette substance à entrée et à sortie de organe perfusé
- VO2 = QS x (sat Ao- Sat VC) x HB x 1.36
- VO2 = QP x (sat VP- Sat AP) x HB x 1.36

QP/QS = Sat Ao - Sat VC Sat VP - Sat AP

Dans cœur « normal »

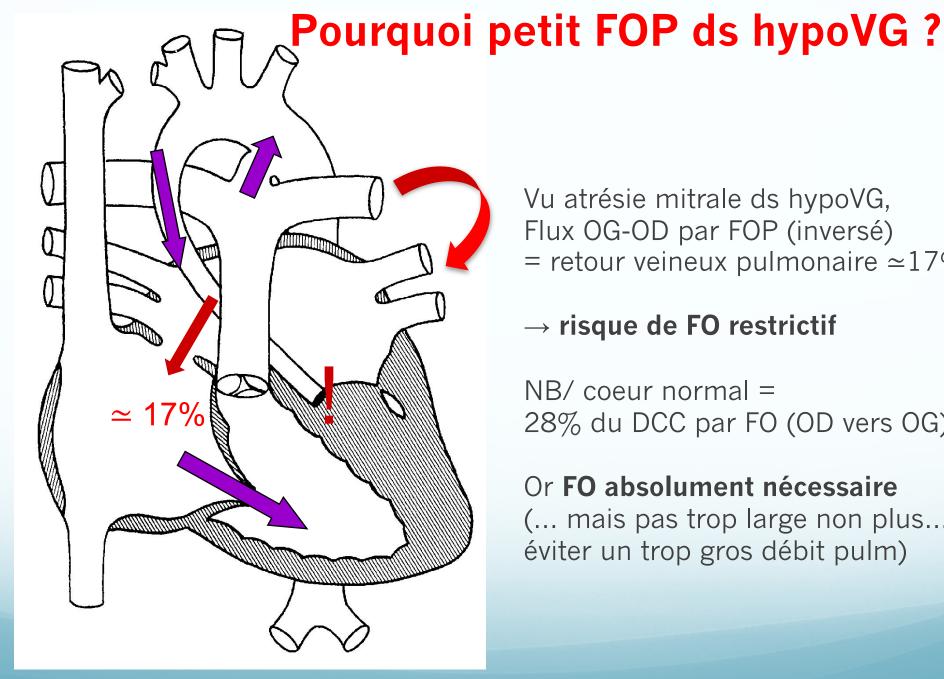

- Satu VC = Satu AP = 75%
- Satu VP = 100%
- Qp/Qs = 100-75/100-75 = 25/25 = 1

Chez enfant « bien » hémodynamiquement : DAV ~ 25%



TGV

- TGV = cardiopathie la moins efficiente pour oxygénation car sang très oxygéné qui arrive ds poumons (or on ne peut pas saturer Hb >100%)
- Le seul débit qui participe à oxygénation
 - = débit à travers le FO de OG vers OD
- CA permet majoration du débit pulm et donc de oxygénation mais efficace que si ce sang oxygéné peut passer vers la circulation systémique en passant par le FO


Rashkind

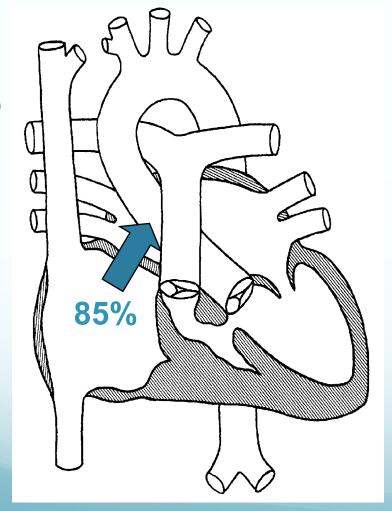
- Au lit du patient aux soins intensifs (salle de naissance)
- sous AG (intubé/ventilé)
- Voie ombilicale ou fémorale (veineuse)
- Sous contrôle écho

Alternatives au cathé

- Blade (Si SIA intact)
- Dilatation de CIA (cathé avec ballon)
- Stent dans CIA

Vu atrésie mitrale ds hypoVG, Flux OG-OD par FOP (inversé) = retour veineux pulmonaire ~17% DCC

\rightarrow risque de FO restrictif


NB/ coeur normal = 28% du DCC par FO (OD vers OG)

Or FO absolument nécessaire

(... mais pas trop large non plus... pour éviter un trop gros débit pulm)

Pourquoi large FOP ds atrésie tricuspide?

31% VCSD

Tout le retour veineux systémique doit passer par le FO ≈85% du DCC

(31% VCSD + 49% VCI + 3% coronaires)

→ rarement FO restrictif

Or FO aussi absolument necessaire... peut (doit) être très large....

49% VCI

Pathologies CA dépendantes

- INTERVALLE LIBRE!!!

 1er examen peut être faussement rassurant
- Problème des départs des NNés de la maternité au J2!! : CA pas toujours fermé ... donc NNé pas tjrs symptomatique !! Mesures de saturation MS/MI
- Pathologies CA dépendantes:
 - pour circulation pulmonaire : CYANOSE
 - pour circulation systémique : PETIT DEBIT SYSTEMIQUE
- importance diagnostic rapide pour R/ spécifique

Pathologies ducto-dépendantes

Hypoxémie grave réfractaire (si ducto-dépendance pulmonaire)

cyanose centrale rebelle à 02 svt isolé (Nné cyanosé mais semble OK, du moins au départ)

Petit débit systémique (si ducto-dépendance systémique)

= bébé malade

Polypnée – tachycarde – bruits sourds – pfs galop HM – pfs oedèmes périphériques – pâle - extr froides – gris (pâle + cyanose) = cyanose périphérique par augmentation extraction 02 (augmentation DAV)

puis insuff cardio-circulatoire avec **collapsus** chute TA – pouls faibles

Délai du diagnostic

- TGV: 15 hr [2 94]
- Hypoperfusion pulmonaire: 41 hr [24 192]
- Insuffisance de débit systémique : 117 hr = 4.8 jours!! [24 504]

Kramer HH et al, Eur J Pediatr 1995

Pathologies **CA** dépendantes pour circulation **pulmonaire**

- Pathologies avec obstacle droit
 - APSI
 - Sténose pulmonaire critique
 - TOF sévère, APSO
 - Certains VU avec obstacle pulmonaire
- TGV (FO et CA)
- Certains Ebstein

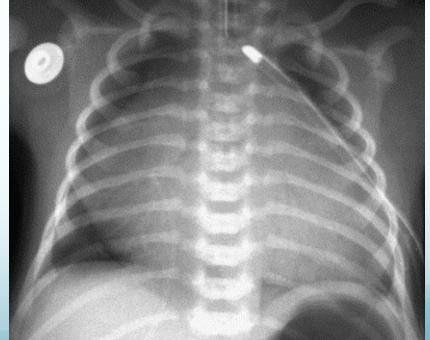
Quand VD/tricuspide tellement malades

→ débit antérograde insuffisant vers poumons (parfois atrésie pulm fonctionnelle)

NB/ Aussi importance de baisser les résistances pulm pour favoriser passage VD-AP

ΔΔ Cyanose rebelle: **RX Tx**

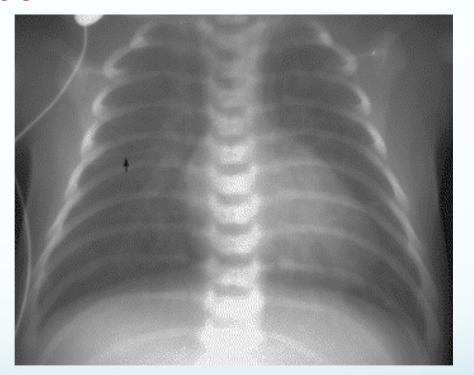
- Poumons hypo-vascularisés = obstacle droit
 - Si cœur non dilaté: obstruction Dte + CIV
 - T4F (SS)
 - APSO (pas/peu souffle systolique, pfs souffle continu = coll Aopulmonaire)
 - VU + large CIV + Rpulm (SS)
 - Si cœur dilaté: obstruction Dte sans CIV
 - Sténose pulm serrée (SS)
 - APSI (pas souffle éjectionnel pulm, pfs souffle systolique d'IT)
 - Ebstein (cœur dilaté +++ car IT+++)


R/ 02 - Prostin (CA ouvert)

!!Ebstein: baisser résistances vasculaires pulmonaires

TOF: cœur en sabot

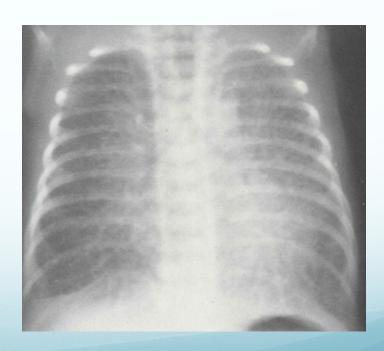
Ebstein: wall to wall heart



ΔΔ Cyanose rebelle: **RX Tx**

Poumons normaux ou hypervascularisés

TGV isolée
 à gros débit pulmonaire


+
médiastin étroit
(AP et Ao
sont l'un derrière l'autre)
+

cœur comme un œuf posé sur le diaphragme

ΔΔ Cyanose rebelle: **RX Tx**

- Poumons hypervascularisés
 - RVPAT bloqué
 Œdème pulmonaire veineux
 (stase veineuse)

Prise en charge des obstructions droites

- 02
- PGE1 pour rouvrir CA: retour à la circulation fœtale (VG assure partie du Qp)

NB/ petite dose svt suffisante car prostaglandines sont métabolisées ds poumons or petit débit pulm

 Ventilation spontanée (pression positive pulmonaire diminue Qp)

Pathologies **CA** dépendantes pour circulation **systémique**

- Si CA se ferme: petit débit systémique (bébé malade)
- Pathologies avec obstacle gauche
 - HypoVG
 - Sténose Ao critique
 - CoAo néonatale
 - Interruption arche aortique
 - etc

Pathologies CA dépendantes pour circulation systémique

Signes cliniques du petit debit systémique

- Polypnée (oedème pulm)
- Tachycarde, bruits sourds, pfs galop
- HM
- Pâle
- Extrémités froides et mal perfusées
- Gris (pâle + cyanose périphérique par augmentation extraction 02)
- Pouls faibles
- Collapsus MOF
- ΔΔ : sepsis néonatal

Prise en charge des obstructions gauches

- PGE1 pour ouvrir CA: retour à la circulation fœtale (VD assure partie du Qs) garder RVp élevées sinon inondation poumons NB/ plus grosse dose nécessaire (0.1 voire 0.2 gammas/Kg/min)
- Ventilation assistée
 pression positive pulm assiste le VG
- Inotropes si dysfonction myocardique courbe pression – volume (cfr dia suivante)

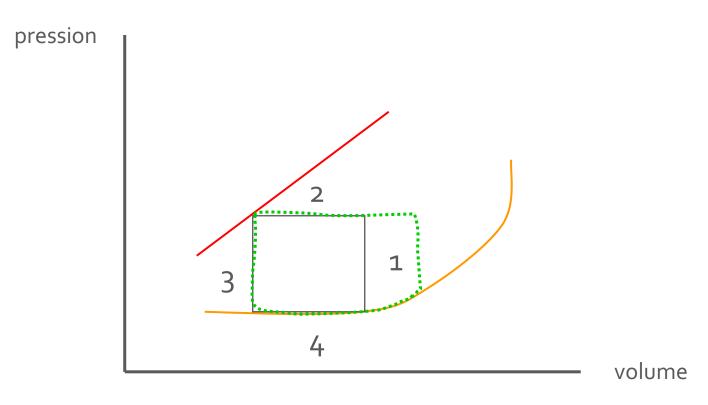
Etude des courbes pression - volume Starling pression Cœur Fermeture Ouverture valve Ao valve Ao P Ao: 100mmHg Starling P télédiast. 8mmHa Ouverture Fermeture valve mitrale valve mitrale volume 30ml 80ml 1 contraction isovolumétrique, 2 éjection, 3 relaxation isovol, 4 remplissage Relation tension/longueur télésystole Relation tension/longueur télédiastole = reflet de la compliance =reflet de la compliance

NB/ Ouverture et fermeture des valves = phénomène mécanique 'passif' (suite à gdt pression de part et d'autre de la valve)

Ds défaillance circulatoire, coeur toujours dilaté (↑ VTd) sauf ds altération compliance

4 mécanismes de défaillance CIRCULATOIRE

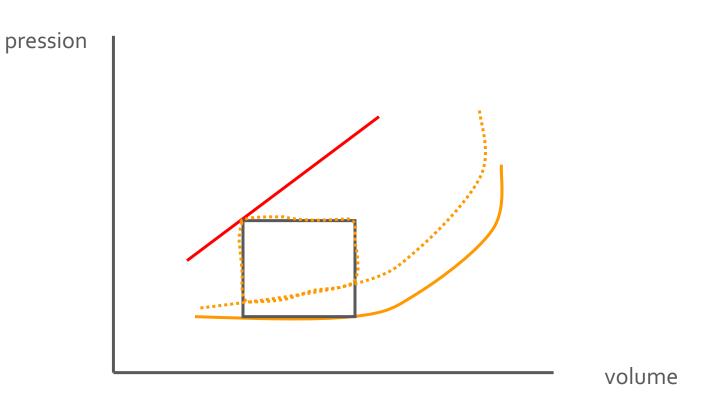
- Augmentation de précharge
- Diminution de compliance


Cœur se vide bien en systole (fc contractile OK): augmentation VTs

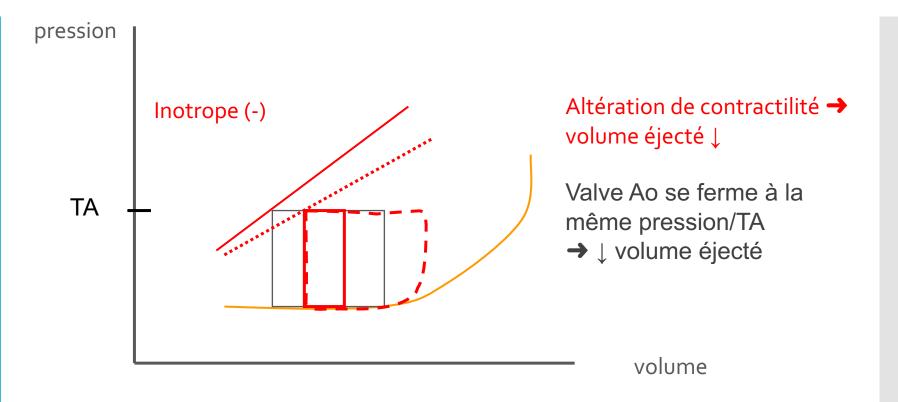
- Diminution de contractilité
- Augmentation de postcharge

Cœur ne se vide pas bien: ↑ VTs

VTs = volume télésystolique VTd = volume télédiastolique

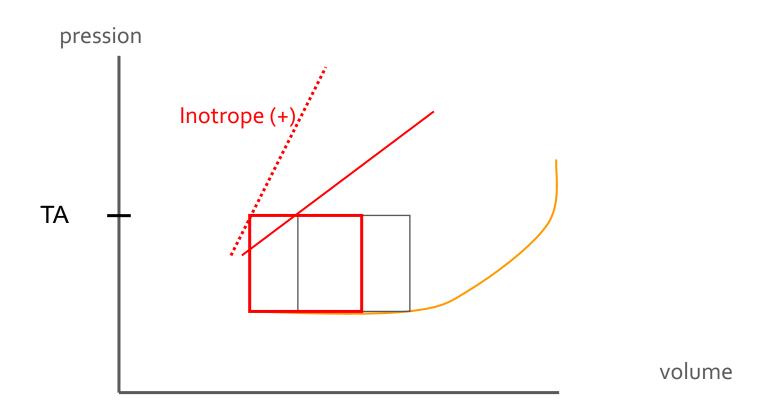

Surcharge de volume/ précharge

1 contraction isovolumétrique, 2 éjection, 3 relaxation, 4 remplissage

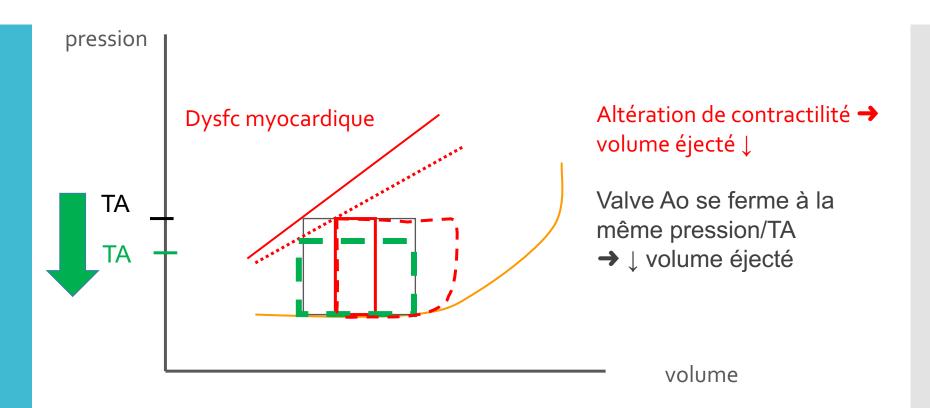

Surcharge de volume (précharge): dilatation en diastole +/- majoration p télédiastolique

Altération compliance

Altération compliance
 Augmentation p télédiastol
 ! Coeur non dilaté (ni en diastole ni en systole)

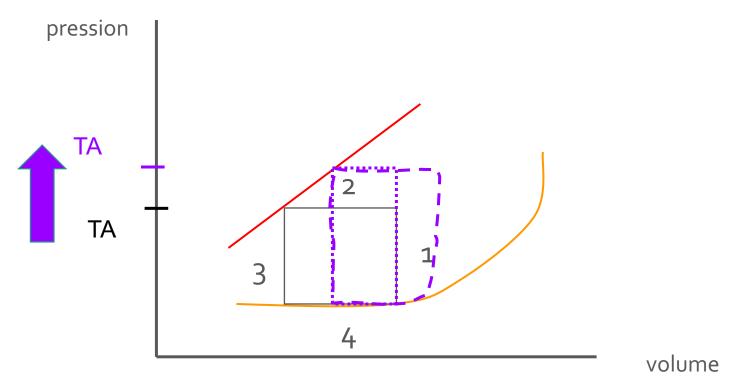

Altération contractilité

Compensation pour garder un debit adéquat, se fait par déplacement de courbe vers droite avec ↑ vol/p télédiastol et ↑ vol télésystolique


- Pression de remplissage = prix à payer pour maintenir un débit
- C'est la fc cardiaque qui détermine les conditions de précharge (et non l'inverse)

Inotrope (+)

Avec inotrope (+): on redéplace la courbe vers gauche en position 'normale' avec \underbrack des p de remplissage mais on 'fouette' le coeur' (\underbrack consommation en O2)


Vasodilatateur

Avec un vaso-dilatateur (corotrope, ACEi)

- → valve Ao va se fermer à plus basse pression
- → ↑ du volume éjecté qui permet un redéplacement de la courbe vers gauche avec ↓ p remplissage et amelioration de l'hémodynamique

Surcharge de pression/ postcharge

1 contraction isométrique, 2 éjection, 3 relaxation, 4 remplissage

Surcharge de pression (postcharge) → volume éjecté ↓
 Compensation par déplacement courbe vers droite avec ↑ vol/p télédiastol et ↑ vol télésystolique

Etapes de défaillance circulatoire cardiogénique

- Congestion capillaire pulm avec maintien TA et Qs (coeur fait son travail au prix ↑ de précharge et donc ↑ ptélédiastol: œdème pulmonaire)
- Congestion capillaire avec maintien TA mais ↓ Qs
 (coeur ne peut plus maintenir débit normal mais débit reste suffisant pour maintenir TA correcte grâce à vasoconstriction : collapsus périphérique)
 NB/ Pas acidose car diminution débit compensée par augmentation extraction en O2 (DAV majorée)

Défaillance circulatoire non cardiogénique

- = Altération des conditions de charge
- Diminution précharge (ex: hémorragie)

```
    ↓ volume → ↓ débit
    mais pas augmentation pressions remplissage par déplacement
    courbe p/vol vers droite puisque pas volume disponible
    → congestion pulmonaire
```

R/ volémiser/transfuser si hémorragie

Altération (↓) postcharge (ex: choc septique)
 ↓ RVs → ↓ TA → compensation par ↑ Qs

mais svt précharge est insuffisante → ↓ TA avec collapsus hyperdynamique

R/ vasoconstricter en périphérie (Noradrénadline)

Prostaglandine E_1 – Prostin $VR^{(g)}$ (3a)

• Doses:

- NNé instable :
 - $0.05 0.1 \,\mu g/kg/min$
 - dose faible si petit débit pulm et TGV
 - dose plus élevée si petit débit systémque, surtout si choc ou NNé > 1sem
 - à réduire dès que effet obtenu : SpO₂ > 70 % ou † Qs :
 - $-0.1 \Rightarrow 0.05 \Rightarrow 0.025 \rightarrow 0.01 \text{ si possible}$
 - † jusqu' à 0,2 (0,4) μg/kg/min si absence de réponse et écho non disponible

– NNé stable :

• $0.005 - 0.02 \,\mu g/kg/min$

Prostaglandine E_1 – Prostin $VR^{(g)}$ (4)

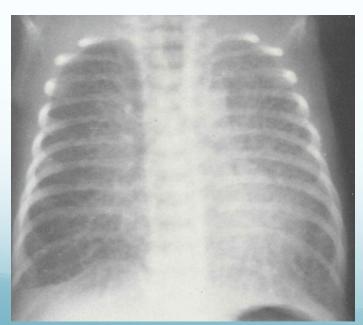
• Effets secondaires :

- apnée bradycardie
- tachycardie hypotension syndrome de fuite capillaire
- fièvre $\Rightarrow \Delta \Delta$ sepsis!
- rash
- irritabilité convulsions
- troubles digestifs : vomissements diarrhée
- hypokaliémie
- ↑ GB (si PG > 24 hrs)

Prostaglandine E_1 – Prostin $VR^{(8)}$ (5)

- Traitement des effets secondaires :
 - apnée bradycardie :
 - exceptionnel si dose < 0,015 μg/kg/min
 - R/ caféine [Lim DS, Pediatrics 2003] stimulation ↔ VNI ↔ IET + VA
 - PG ≠ intubation et VA
 - hypovolémie:
 - R/ volémisation

RVPAT BLOQUE


- Diagnostic anténatal difficile mais possible
- Presque seule urgence chirurgicale néonatale
- ΔΔ: HTAP

HTAP néonatale isolée

(càd non associée à hernie diaphragmatique etc)

= RVPAT bloqué jsq preuve du contraire

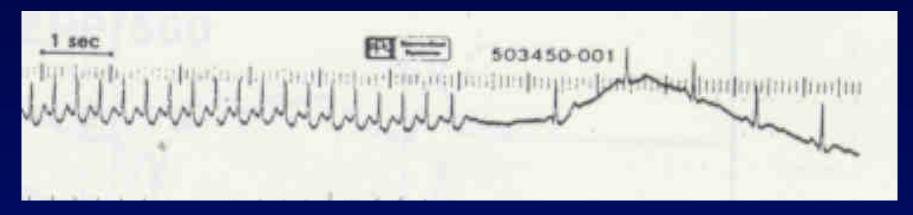
Surtout si shunt DG inter-auriculaire!!!

Pathologies myocarde dépendantes

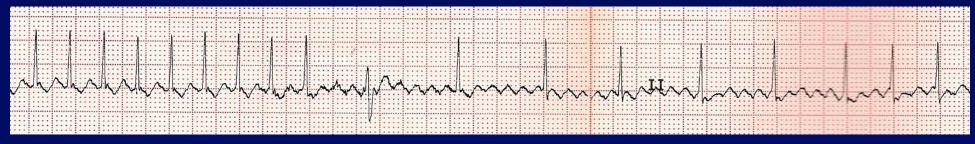
- Après la naissance:
 ↑↑ NETTE DU DEBIT CARDIAQUE
- Maladies métaboliques
 - Beta-oxydation des acides gras
 - Déficit transporteur de la carnitine
 - Chaines respiratoires
 - etc
- Maladies infectieuses (myocardite virale)

Pathologies rythme dépendantes

- Toutes sortes de troubles du rythme
- Tjrs exclure arythmie en cas de défaillance cardiaque avec anatomie normale (surtt tachy supra-ventriculaires en particulier atriale p + QRS fins = plus difficile de faire le $\Delta\Delta$)
- Parfois difficile de faire $\Delta\Delta$
 - Décompensé parce que tachycarde
 - Tachycarde parce que décompensé

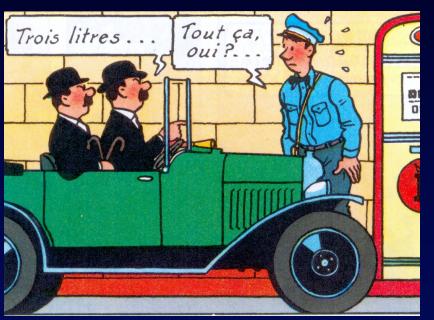

Arythmies

- Les plus fréquentes : TSV par ré-entrée (QRS fins)
- Aussi:
 - TV (QRS large)
 - Bloc AV (rythme lent)

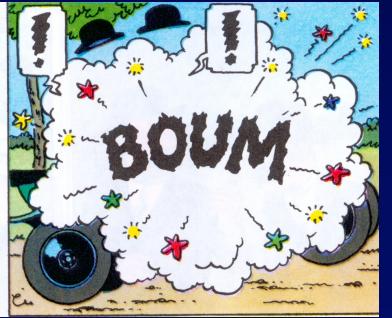

- Traitement TSV:
 - Ice bag Adénosine Prudence si enfant en petit débit cardiaque
 - Choc électrique externe (+ sedation et ventilation)
 - Beta-bloquants: 1^{er} choix (sauf si choc cardiogénique)
 - Autres choix: Flécainide, Cordarone, etc
 - !!! Pas Cordarone IV
 Excipient est inotrope négatif

Adénosine

0.1 – 0.2 mg/Kg IV rapide + flush (cathé huméral si possible)
A jeun (si possible), SG, Atropine et ballon prêts CI relative (prudence+++) post-tx cardiaque (risque de BAV prolongé+++ ds coeur dénervé)



TSV par réentrée



Flutter

